If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=-16+30
We move all terms to the left:
z^2-(-16+30)=0
We add all the numbers together, and all the variables
z^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 14a+5=45+4a | | 6x-44=3x+49 | | 6m+5=23* | | 4m+1=2m+11* | | 3k+10=21 | | 8+6x+7x=8 | | 2x-4(x-5)=-8+3x-7 | | 15-6n=2n-9 | | -97+3x=11-10x | | 55+(5x+10)=90 | | -3s=s−8 | | 3x-7=x+16 | | -3q=7−10q | | 18m+18+3m+3+90=180 | | -4(4x-6)=22 | | −2(3−2x)=7x+9−2(3−2x)=7x+9 | | 10x-66=24+13x | | 2+0.25x=1+0.3x | | 3x+1+2x+16=10-13 | | -6=(5x-22)÷(-3) | | 7-c=-13 | | -6=5x-22÷(-3) | | 2x+18+3x+6=9x-16 | | 9x-103=37+4x | | 13-u=278 | | 9x-100=37+4x | | R-81=-r-5 | | x+17+8x-13+3x+8=180 | | 60+x=96 | | 0.17/x=4 | | (7x+8)=(10x+2) | | 7x-100=11x+28 |